The NIST Mobility Testbed

William G. Rippey
Robot Systems Division
National Institute of Standards and Technology (NIST)
Gaithersburg, MD 20899

rippey@cme.nist.gov

Abstract

This paper describes the application of NIST’s Real-
Time Control System (RCS) reference architecture for
intelligent systems to autonomous robotics. The focus is
on the Mobility Testbed, a facility which supports
interdependent researchin two areas: 1) refinement of the
RCS reference architecture and development of its
methodology (the steps and tools used to derive specific
implementations from the reference architecture), and 2)
experiments to develop advanced vision and world
modeling techniques for autonomous robots.

NIST researchers gain several benefits by using
Testbed resources and the consistent approach to control
architecture provided by the reference architecture.
Developers outside of NIST can also gain these benefits
by using a reference architecture and a corresponding
methodology for system development.

Keywords: reference architecture, robotic land vehicle,
hierarchical control.

1. The Mobility Testbed Project
1.1 Goals

The Mobility Testbed project has two technical goals.
The first is to develop a formal methodology for systems
engineering of real-time intelligent machines that is based
on the RCS reference architecture (described in section
2.1). The methodology covers high-level system design,
detailed design of system components and interfaces, and
subsequent implementation and testing of control
systems. The second goal is to contribute to development
of sensor and control systems for a sensor-guided
autonomous mobile robot.

The rapid pace of technology development is providing
engineers and scientists with many new computer-based
products that can benefit society, To fully hamess the
potential of these products, developers must be able to
integrate many specialized components into large,
intelligent, complex systems. Efficient systems
development and integration requires improvements in
current engineering methods, models, tools, and the
development of systems integration standards.

Further, NIST believes that the development of an
open-system architecture reference model for real-time
machines, and development of integration standards and
computer-aided tools for machine design and
implementation, is feasible and necessary for U.S.
industry to remain competitive in the world high-
technology marketplace. Many closed-system automation
and robotic products exist in the marketplace today.
Proprietary closed-system solutions hamper efforts to
develop large, complex, real-time, intelligent control
systems because they restrict access to information
necessary to implement interfaces between components
developed by different vendors.

1.2 Research

The testbed comprises resources for implementing
robotic control and sensor systems. These resources
include a mobile robot, cameras and image processing
systems, computer and sensor interface hardware, software,
and operating system services. The mobile robot, on-
board cameras, and video monitors of the vision
processing system are shown in Figure 1. The cument
experiments focus on controlling a vision-guided mobile
robot to avoid obstacles, center its motion between
obstacles, and map the robot’s environment.

NIST’s current development practices are documented
in an internal document “Testbed Guidelines,” which
describes the RCS reference model, RCS design and
implementation methodology, and integration standards
for developing systems on the testbed. The guidelines are
derived from experience of developing modules to support
applications development, providing systems services
such as code configuration control, and participating in
testbed demonstrations.

2. The NIST Reference Architecture for Intelligent
Systems

2.1 The RCS Reference Architecture

To reduce complexity the RCS hierarchical control
architecture modularizes the system by using levels of
control and templates for processes within levels. A
particular feature of RCS hierarchical control is the

Proceedings of the 9th IEEE International Symposium on Intelligent Control,
Columbus, OH, August 16-18, 1994

Figure 1. The mobile platform, on-board cameras, and monitors of the vision system

repeated use of a standard template and standard interface
characteristics for all levels, regardless of controller
functionality. This standardization reduces the complexity
of designing, building, and operating RCS systems.
Further, the modularization enforced by reference
architecture guidelines creates interfaces between system
functions and between subsystems that enhance
extensibility and provide opportunities for standardization,
including open-architecture concepts. Standard level
names (and shorthand numbers) in RCS are servo(l),
primitive(2), elementary move(3), task(4)[3]. The servo
level interfaces to actuators and sensors and is the lowest
level.

The coarsest modularization of the processes of a level
is described by the control node template. A control
node comprises four control elements: behavior generation
(BG), world modeling (WM), sensory processing (SP),
.and value judgment (VJ), as shown in Figure 2. RCS
specifies further decomposition of these elements that is
beyond scope of this paper. RCS is described in much
more detail in [3] and [8].

Control nodes are the building blocks of RCS control
systems. Interconnected nodes are arranged in hierarchical
levels to implement control functions. Major system
design steps then consist of defining system data, defining
control system functions and assigning them to
appropriate levels and elements, defining interfaces
between elements and between sub elements, and
allocating all processesto computers and then providing
suitable communications, At the lowest level of an RCS
system control nodes send commands to actuators and
process signals from sensors that provide feedback about
the state of the environment.

Each element of the control node template is described
below. Characteristics of elements are then further
illustrated by describing the architecture of the Vision-
based Intelligent Real-time Robotic Vehicle (VIRRV).

W;Ffmﬁ‘& |

Knowlodge Datsbase

1’;‘;(‘{'{) Commandg-1)

Figure 2. Template for an RCS Control Node. i”
refers to level number.

Behavior generation (BG) processes take a command
from a supervisor and decomposes it in real-time into sub-
tasks to be performed by subordinate nodes. Any BG
may have more than one subordinate, as in a
manufacturing cell where the cell controller coordinates a
robot, numerically controlled machine tool, and a
materials handling device concurrently. Each device has
its own controller that may have several internal levels.
The BG template specifies three sub-elements that perform
spatial decomposition, planning (generation or selection of
state graphs for accomplishing goals), and plan execution.

The world modeling (WM) element generates a
control node’s representation of the external world. This
includes dynamic information gathered by processing
sensor data as well as static, a priori information such as
laws of physics, and robot arm geometry. The world
model provides this data to BG processes to be used in
decision making and to provide feedback control, and to
WM processes of peer and higher level nodes through the
knowledge database. Through this sharing, information
about the system’s environment exists in levels of detail
and abstraction that correspond to the levels of task
decomposition. Environment data are more detailed at
lower levels, more abstract at higher levels. Levels of
WM data for vision processing are illustrated by pixels of
an image at level 1, the lowest level, recognition of lines
at level 2, recognition of surface features at level 3, and
recognition of a specific object at level 4.

The world model knowledge database (KD) includes
static information which is available before action begins,
and dynamic knowledge which is gained from sensing the
environment and states of the intelligent system itself as
action proceeds. Static information includes knowledge
about the laws of physics, chemistry, optics, and the rules
of logic and mathematics which is representedin the WM
functions that generate predictions and simulate results of
hypothetical actions.

Sensory processing (SP) modules gather data from
sensors and interpret it. The functions of data integration
over time and space, and filtering such as Kalman filtering
for noise rejection are also performed in SP. Vision
processing functions include feature extraction, pattern
recognition, and image understanding. As with WM data,
SP data is distributed in the control levels with more
abstract interpretations of sensory data performed at higher
levels.

“Value judgment (VJ) elements provide the criteria
for making intelligent choices. Value judgments evaluate
the costs, risks, and benefits of plans and actions, and the
desirability, attractiveness, and uncertainty of objects and
events. Value judgments may evaluate risk and compute
the level of uncertainty in the recognition of entities and
the detection of events. Value judgments can evaluate
events as important or trivial. Cost/benefit value
judgment algorithms can be used to evaluate plans or steer
task execution so as to minimize cost and maximize
benefits. ” [3].

The Operator Interface (OI) conveys data betweena
process and a human being who can influence the
operation of the process. Graphic user utilities provide
ways for the operatorto easily generate data and send it to
a system, or to access and view the data produced by a
system.

RCS systems implement communications between
control node elements using standard utilities that provide
single writer, multiple reader channels, Details of
physical paths and protocols are hidden from the

processes.
2.2 Some Current RCS Applications at NIST

The RCS Reference Architecture has been used as a
guide in developing many real-time control systems at
NIST, some of which are listed here. The Field Material-
Handling Robot is a mobile robot that manipulates pallets
of ammunition [7]. An Army HMMWYV (4 wheel-drive
vehicle) is being controlled for teleoperated and
autonomous driving [9]. NIST has designed an
architecture for automated coal mining [5]. Crane
applications such as construction may benefit from the
coupling of an RCS controller with a specially stabilized
mechanical platform to form Robocrane [4].

3. VIRRV Architecture

The vision-based intelligent real-time robotic vehicle
(VIRRV) comprises the following mobility testbed
components; the mobile robot, VME single-board
computers, a workstation computer used for software
development and control, vision systems consisting of
video cameras, pan/tilt units, and an image processing
system, PIPE [6]. The robot is an electric powered
vehicle with an embedded processor for motion control
and communications. See Figure 1. VIRRV sensor and
control system processors are mounted in a stationary
rack. A cable tether to the robot conveys video and
RS232 signals.

VIRRV is designed according to formal RCS
methodology guidelines to provide an easy-to-use testbed.
VIRRV experiments involve developing and testing
several image processing algorithms. Experiments test
vision system interaction with vehicle control to
accomplish collision free, goal-oriented motion and to
map objects in the robot space. The current tasks being
performed with the VIRRV are robot motion with
centering behavior (adjusting motion to equalize visual
data “seen” to the left and right of the motion axis),
obstacle detection and avoidance, and mapping of objects
perceived by the robot sensor systems. Near-future tasks
will be to combine sensor guided behavior with generating
and executing path plans.

This section describes the VIRRV architecture shown
in Figure 3. Since VIRRV was designed using an earlier
version of RCS than described in Section 2.1, its
architecture does not contain explicit value judgment and
knowledge database elements. The functions and
information allocated to these elements are distributed
primarily among the SP and WM, and partially to BG
modules.

3.1 Operator Interface
The operator utilities provide a person an interface to

the VIRRV Task level BG and WM processes. The
operator interface to BG conveys commands to VIRRV

and status from it: logical status of the controller and
status of the currenttask, Through interaction with WM
the utilities allow the operator to display data such as
current platform location and its recent path, build and
display a priori room maps, and build path plans that are
executed by the Task level.

There are two modes of operation for RCS processes:
operations mode, and development mode. Experiments
are run in operations mode with two types of operator
interface functions:

- interacting with control nodes. Operatoractions
include generating commands, selecting operating
mode (e.g. single step, remote, local, teleoperation),
displaying data buffers.

- reading process data. Operator interface utilities
can access the output data of processes for monitoring
and troubleshooting by reading global communications
channels. The provision of multi reader channels is
part of the RCS methodology.

During development testing or error recovery of a
process, the operator interfacemay be used to manipulate
all aspects of process operation. These functions are
typically performed while automatic processing has been
halted: changing modes, generating or changing input
data, changing internal data, selectively executing
functions, editing startup scripts or data.

3.2 Task Level, level 4

The BG executes an operator command by following
either a plan it generated or one generated by the operator,
and sending commands to the Emove level. The current
VIRRV Emove commands (commands fo the Emove
level) are to go to or through points contained in the Task-
level path plan.

The BG module also plans paths from the current
robot location to a specified goal in the room. It uses the
current map of the room and generates a path so the
platform does not collide with known obstacles. It cando
the planning before platform motion has begun, and it can
replan in the event that the current plan cannot be carried
out due to unmapped obstacles.

The WM module maintains a map of the platform’s
environment in real-time. It combines information from
an a priori map, real-time platform location and
orientation data, and real-time sensor data describing
obstacles. There is currently no task level SP element.

3.3 Elementary Move (Emove) Level, level 3

This level issues commands to the Prim level to
traverse path segments assumed to be free of obstacles.
The distance range of the commands extends to just inside
the range of vision sensors. SP continuously reads data
from Prim level and calculates visual “flow” (the
transition of intensity information across the camera focal
plane due to relative motion between the camera and

environmental objects), and then depth (distance to
objects) using flow. When depth values indicate an
obstacle in the robot path Emove BG sends commands to
Prim directing the robot to avoid the obstacle. Obstacle
avoidance may cause the platform to depart from a planned
path. Emove makes sure that once the obstacle has been
avoided the platform goes back to the planned path if
possible. If the plan cannot be followed, Emove reports
this to Task level which replans a path to the goal.

3.4 Primitive (Prim) Level, level 2

Prim carries out path segment commands from Emove.
At the Prim level path segments are assumed to be free of
obstacles. Prim BG controls velocity profiles and
directions of platform travel. Prim is currently the only
VIRRY level where there is spatial task decomposition,
i.e., decomposition into tasks to be performed
concurrently by two separate servo-level subsystems, the
Mobile Platform Controller (MPC) and eye controller.

Prim also controls gaze stabilization necessary for
generating valid flow measurements. To stabilize gaze the
angle of the forward looking camera is maintained at an
absolute heading though the platform may be turning.
‘When a maximum eye angle is reached Prim commands
the eye to saccade (move rapidly) to a centered position.
The system ignores flow data produced during the saccade.

The SP process is the PIPE Manager, a front-end
process that formats data from a high speed parallel vision
processor, PIPE[6], and presents it to the rest of the
VIRRYV system.

3.5 Servo Level, level 1

There are two subsystems at the Servo level, Mobile
Platform Controller (MPC) and Eye. They execute
commands from Prim concurrently to carry out
coordinated actions.

The MPC controls the motions of the platform and
processes and publishes the data from dead-reckoning
position processing of the platform. In the near future it
will interface to vestibular sensors residing on the
platform for improving navigation, and gaze and camera
stabilization. MPC commands include steer, turn, go at
a specified linear speed, and stop. An operator interface
allows the operator to take the MPC out of automatic
mode, read all external and internal data buffers, and use a
joystick to teleoperate the robot.

The Eye is a pan and tilt actuator with attached
cameras. Camera data is continuously digitized and
processed by PIPE and supplied to Prim level SP. In the
future the vestibular sensors may be tightly coupled with
the Eye controller for camera stabilization. This would
be done by linking the MPC and Eye WM processes.

OPERATOR UTILITIES

Cameras
Figure 3 . Logical Control Architecture for VIRRV

4. The Development Methodology for Mobility
Testbed Systems

As previously stated the testbed is used to support
robotic experiments as well as to define a standard
engineering methodology for developing control systems
[31[4]. The methodology describes practices for deriving
an application from the reference architecture. The
. methodology will improve systems development at NIST
and will make the RCS reference architecture
understandable and usable to developers outside of NIST.
Below are some of the methodology elements NIST is
addressing.

- The RCS system development model is a
standard life cycle model that describes chronologically
and logically related steps for developers. NIST is
emphasizing rapid prototype development in which
portions of a system may be implemented before the
system design is complete.

- The RCS control system models are templates
for elements and sub elements used to build up a
controller, e.g. SP, WM and BG. Primary issues are
what system functions to assign to the elements and
how to design the interfaces between them. Standard
templates aid consistency and understandability of an
architecture, and facilitate use of tools and reuse of
software.

- Standard inter-process communications
includes a standard application process interface for
code portability that provides an open architecture, and
utilities that implement inter-process and inter platform

communications with guaranteed performance.

- Process scheduling techniques must ensure real-
time execution, with measured performance evaluation
so that designers can allocate processes to processors
and detect and reallocate processes which violate timing
requirements,

- Software Configuration Management is
necessary when teams of people are working together,
to ensure code consistency, and to preserve useful
system configurations for tests and demonstrations.
People need to be able to easily find source and
executable code, and understand code written by others.
Testbed practices cover directory structures, policy for
maintaining the working code directories, and coding
practices (for the C language).

- Testing procedures promote stepwise system
testing to promote efficient and productive testing.
Guidelines include test design, execution, and
documentation.

- Formal design reviews will be conducted in the
near future to ensure compliance with the reference
architecture, to foster standard practices, to detect
design errors, and to educate staff on useful engineering
techniques.

- Definition of a standard vecabulary addresses
the main problem of subtle differencesin understanding
of terms. When meaning is imprecise people do not
communicate, or they spend a great deal of effort
explaining terms and concepts. Concise, precise
terminology is essential for groups of people to work
on complex systems.

IEEE standards for software engineering and system
development are being incorporated into the testbed
guidelines where applicable.

5. Summary

NIST researchers gain several benefits by using
Testbed resources and the consistent approach to control
architecture provided by the reference architecture.
Developers outside of NIST can also gain these benefits
by using a reference architecture and a corresponding
methodology for system development.

The most important benefits and results are:

o NIST staff can develop systems faster, more
efficiently, and produce better quality systems by using
tools, methods, and documentation available in the
testbed.

o rescarchers can “reuse” hardware and software
components developed in other projects.

» subsystem specialists need not become system
architecture experts to build their own systems or to do
experiments

» designs are easier for others to understand and work
on since architecture principles and practices are standard.
Researchers gain from a pool of lessons learned among
several projects.

Mobility testbed efforts in the near future will include
the following:

» Continue to define details of the methodology and
of the RCS reference architecture and document them so
that NIST researcherscan build conforming applications
and others can easily understand and use RCS.

» Develop computer-assisted and automated tools for
system design, code generation, verification and
validation, and simulation. These are needed to free
developers of details of implementation, to enforce the
design principles, and to test designs for correctness and
reliability before they are implemented.

» Continue to experiment with process reallocation
between processors and process scheduling to explore
issues of communications, code portability, open
architecture, and measurement of real-time performance

» Demonstrate multilevel replanning. The VIRRV
Task level does path planning (and replanning in real-
time), and the Emove level plans for obstacle avoidance.
This would occur when an unmapped obstacle is detected
at a planned way point. Because the robot cannot traverse
the way point, Task level stops executing the current path
plan and generates a new one based on the updated room
map.

» Work on vision processes and algorithms for mobile
robot behavior including combined vision processing
(obstacle avoidance plus centering), and mapping using
multiple sensors. A vestibular sensor system, including a
gyroscope, compass and accelerometers, will be
investigated for robot motion control and camera and gaze
stabilization. To achieve total robot autonomy the

physical tether will be eliminated by putting batteries on-
board to power sensors and processors.

References

[1] Albus, James S.; McCain, Harry G.; Lumia, Ron
NASA/NBS Standard Reference Model for Telerobot
Control System Architecture (NASREM); NIST Technical
Note 1235, 1989 Edition; April 1989. 76 pp.

[21 Albus, James S. Outline for a Theory of
Intelligence; 1EEE Trans. on Systems, Man, and
Cybemetics; Vol. 21, No. 3; May/June 1991.

[3] Albus, James S.; RCS: A Reference Model
Architecture for Intelligent Control; IEEE Journal on
Computer Architectures for Intelligent Machines; May
1992,

[4] Bostelman, Roger V.; Dagalakis, N.; Albus, J.S.
A Robotic Crane System Utilizing the Stewart Platform
Configuration; proceedings of the ISRAM '92
Conference; Santa Fe, NM; November 10-12, 1992.

[S] Huang, Hui-min; Quintero, Richard; Albus,
James S. A Reference Model, Design Approach, and
Development Illustration toward Hierarchical Real-Time
Control System for Coal Mining Operations. Control
and Dynamic Systems: Advances in Theory and
Applications, Volume 46: Manufacturing and Automation
Systems: Techniques and Technologies, Part 2 of 5; C.T.
Leondes ed; Academic Press; 1991.

[6] Kent, Emie. W.; Schneir, M.O.; Lumia, Ron
Pipe; Journal of Parallel and Distributed Computing,
198S.

[71 McCain, Harry G.; Kilmer, Roger D.; Szabo,
Sandor; Abrishamian, A. A4 Hierarchically Controlled
Autonomous Robot for Heavy Payload Military Field
Applications; Proceedings of the International Conference
on Intelligent Autonomous Systems;, Amsterdam, the
Netherlands; December 8-11, 1986.

{81 Quintero, Richard, Barbera, Anthony J. A Real-
Time Control System Methodology for Developing
Intelligent Control Systems; NISTIR 4936; October 1992.
72 pp.

[9] Szabo, Sandor; Scott, Harry A.; Murphy, Karl
N.; Legowik, Steven A.; Control System Architecture for
a Remotely Operated Land Vehicle; proceedings of Sth
IEEE International Symposium on Intelligent Control;
Philadelphia, PA; September 1990; 8 pp.

